

Widevine DRM

Architecture Overview

Table of Contents

Contact Widevine 4

Related Documentation 4

Widevine DRM Architecture Overview 5
Architecture Components List 5
Architecture Component Relationships 5
Components Overview 6

Common Encryption 6
Encrypted Media Extensions 6
Media Source Extensions 7
Dynamic Adaptive Streaming over HTTP 7

Bandwidth: Dynamic Adaptive Streaming 7
Transport: Streaming over HTTP 9
HLS Streaming 9

Media Packaging 9
License Server 9
Video Players 9
Content Decryption Module 9
OEMCrypto Module 10

Widevine DRM Security Model 10
Security Levels Provided by Widevine DRM 12

Security Level Definitions. 12
Security Level 1 12
Security Level 2 13
Security Level 3 13

Security Level for Widevine Devices 13

Shaka Packager 14
Packaging Steps 14
Working with Shaka Packager 15

Downloading Shaka Packager 15
Building Shaka Packager 15
Shaka Packager Community 16
ISO BMFF 16

Shaka HTML5 Video Player 16
DASH, CENC, EME, MSE Standards 16

Google - Confidential Version 1.2: March 6, 2017 Page 2 of 28

Player Components 16
Widevine License Server 17
Shaka Player Library 17
Encrypted Media Extensions 17
Media Source Extensions 17
Content Decryption Module 17

Component Stack for Shaka Player 17
Chrome Components Needed by Shaka Player 18
App Development with Shaka Player 18
Working with Shaka Player 19

Downloading Shaka 19
Shaka Requirements 19
Shaka Community 19
Building Shaka 19
Pre-compiled Builds 20
Test Application 20

Android Player for Widevine DRM 21
Components for Android in Widevine DRM 21
Native Android Application 22

ExoPlayer 22
Reference Player 22
Source Code 22
Library Wrapper 22

HTML5 Chrome in Android 23
Supported Android Versions 23

Widevine DRM SDK for iOS 24
CDM Dynamic Library 24

Universal DASH Transmuxer 24
Parse the Manifest 24
Create an HLS Playlist 24
Stream Segments 25

Content Decryption Module 25
iOS Host 25
Protocol Buffers 25
String Encoders 25

OEMCrypto API 25
Widevine Reference Player for iOS SDK 25
Working with the Widevine SDK for iOS 26

Google - Confidential Version 1.2: March 6, 2017 Page 3 of 28

Widevine iOS SDK Requirements 26
Widevine CDM Dynamic Library Versions 27

Production Releases 27
Development Releases 27

Widevine iOS Community 27

Version History 28

Contact Widevine
For more information about Widevine, contact us at http://www.widevine.com/contact.html.

Related Documentation
For content provider partners, please look at the Getting Started guide.
For device partners, please look at the Getting Started for Devices guide.

Google - Confidential Version 1.2: March 6, 2017 Page 4 of 28

http://www.widevine.com/contact.html
https://storage.googleapis.com/wvdocs/Widevine_DRM_Getting_Started_Devices.pdf
https://storage.googleapis.com/wvdocs/Widevine_DRM_Getting_Started.pdf

Widevine DRM Architecture Overview
Google's Widevine DRM architecture provides a market-leading platform for delivering protected
premium content at the highest possible quality to the largest number of devices. The Widevine
DRM platform uses standards-based royalty-free solutions for encryption, adaptive streaming,
transport, and player software. It also includes free, open source tools for content preparation
and media playback, enabling openness and innovation at every level.

Widevine DRM gives content partners easy, effective, and inexpensive methods for streaming
video over the Internet, accelerating the transition away from proprietary and legacy systems to
give billions of video consumers better access to the next generation of media experiences.

This overview will introduce the nine core components of the Widevine DRM architecture and
explain how the components work together to create a secure playback system that starts with
the Shaka Packager and finishes with a choice of players on multiple client platforms and
devices, including HTML5, Android, and iOS.

Architecture Components List
The Widevine DRM architecture consists of the following nine core components:

Name Description

Common Encryption W3C Standard encryption protocol

Encrypted Media Extensions W3C Standard for encrypted playback

Media Source Extensions W3C Standard for media streaming

Dynamic Adaptive Streaming over HTTP W3C Standard streaming protocol

Shaka Packager Open source content packaging

Widevine License Server Provides WV license information

Video Players (HTML5, Android, iOS, OEM) Secure playback on various platforms

Content Decryption Module Device-specific decryption

OEMCrypto Module Trusted Hardware decryption

Architecture Component Relationships
The Widevine DRM components work together to create an end-to-end platform for protecting
premium video content, and provides all the tools you need to go from the content preparation
stage to the final delivery on any device. The flow process begins by preparing your media with

Google - Confidential Version 1.2: March 6, 2017 Page 5 of 28

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=65274
http://www.w3.org/TR/encrypted-media/
http://www.w3.org/TR/media-source/
https://w3c.github.io/encrypted-media/cenc-format.html

Common Encryption and the Shaka Packager for adaptive streaming. Once prepared, the
content is encrypted with licenses which are stored on the Widevine License Server. Later,
when the encrypted content streams to the Player via a Content Delivery Network, the License
Server provides license information to a supported media player. The encrypted content is then
passed to the device's Content Decryption Module, enabling secure playback with the
OEMCrypto Module. Diagram 1-1 shows how the Widevine DRM components flow together as a
platform.

Components Overview
This section introduces the nine core components and explains the role they play in the
Widevine DRM platform.

Common Encryption
The Widevine DRM uses the Common Encryption (CENC) open standard for encryption and
also recommends the ISO Base Media File Format (BMFF) standard with CENC, but note that
the WEBM format is also supported and that other formats may be supported in the future. You
can read more about CENC and BMFF on the W3C site at
w3c.github.io/encrypted-media/cenc-format.html. Note that the Widevine DRM CENC (Common
Encryption), Generic CENC, Generic FairPlay Streaming encryption formats are currently
supported.

Encrypted Media Extensions
The Encrypted Media Extensions (EME) use the Common Encryption format as part of the
Widevine DRM end-to-end security protocol, making sure no content escapes into the wild. The
Encrypted Media extension to the HTML5 Media element specification can be found at
http://www.w3.org/TR/encrypted-media/. There is a good overview of EME at
http://www.html5rocks.com/en/tutorials/eme/basics/.

Google - Confidential Version 1.2: March 6, 2017 Page 6 of 28

http://www.w3.org/TR/encrypted-media/
https://w3c.github.io/encrypted-media/cenc-format.html
http://www.html5rocks.com/en/tutorials/eme/basics/

Diagram 1-1: Widevine DRM Component Flow

Media Source Extensions
Media Source Extensions (MSE) are used to parse the incoming DASH-based media streams
and pass them to the playback hardware. The Media Source extension to the HTML5 Media
element specification can be found at http://www.w3.org/TR/media-source/.

Dynamic Adaptive Streaming over HTTP
In order to provide a solution to the common problem of varying bandwidth in an unknown
environment, Widevine DRM uses the open standard, Dynamic Adaptive Streaming over HTTP
(DASH). You can learn more about DASH at http://dashif.org/.

The DASH protocol is used because it solves two important content delivery problems:
bandwidth and transport.

Bandwidth: Dynamic Adaptive Streaming
In an ideal streaming scenario, video is sent to the viewer at the highest rate and quality.
However, in a typical urban neighborhood, the delivery bandwidth may change over time for a
variety of reasons. For example, at 8:00PM in an apartment complex, when everyone starts
watching movies at the same time, the bandwidth decreases and the stream needs to play at a
lower bitrate to preserve continuity.

Google - Confidential Version 1.2: March 6, 2017 Page 7 of 28

http://dashif.org/
http://www.w3.org/TR/media-source/

DASH solves this problem by taking video encoded at different resolution and bitrates,
converting it into fragmented MP4 files, which are divided up into segments of the same length.
When the device receives encrypted video, it checks the bandwidth and requests the
appropriate segment of the fragmented MP4 file from the server. The bandwidth is checked
again on a repeating basis and a higher or lower quality segment is chosen to play next if the
average bandwidth has changed significantly. Because the quality of the stream is dynamically
adapted when the circumstances change, the viewer has an optimum playback experience.
Note that a "fragment" in fragmented MP4 may have more than one segment.

Diagram 2-1 shows how dynamic adaptive streaming works. The highlighted areas indicate
which alternate chunk (segment) will play at a specific time, determined by current bandwidth.
These are only sample numbers, and the numbers and times will vary depending on bandwidth
and quality desired.

Google - Confidential Version 1.2: March 6, 2017 Page 8 of 28

Diagram 1-2: Dynamic Adaptive Streaming

Transport: Streaming over HTTP
Widevine DRM uses the open standard HTTP protocol because it is included in all browsers
and browsers are now part of most devices.

HLS Streaming
Widevine also supports the Apple HLS Live adaptive streaming format.

Google - Confidential Version 1.2: March 6, 2017 Page 9 of 28

Media Packaging
Widevine DRM provides a complete open-source DASH packaging system called Shaka
Packager. The packager converts files of different resolutions and bandwidth to fragmented
MP4, defining equal-length segments for all desired files. A manifest (MPD) is prepared that
describes the different resolutions and bandwidth for each file. When a player receives
encrypted content, it requests the appropriate segment that will provide optimal viewing at that
moment, but can request different segments as bandwidth conditions change. The Shaka
Packager is covered in more detail in the Shaka Content Packager section.

License Server
In order to provide license information for encrypting and decrypting media securely, Widevine
DRM provides a Cloud-based license service. When media is prepared, information about the
media is sent to the Widevine License Server for later use. Then when the stream is received by
the Player, the License Server is called and license information is provided. The license protocol
used to communicate with the License Server is a simple request-response over HTTPS. The
License Request and License Response messages are constructed and parsed using Google
Protocol Buffers.

Video Players
Widevine DRM supports player technologies for HTML5, Android, and iOS. In addition, it also
supports individual OEM devices on a licensed request basis. Specific details for developing
with HTML5, Android, and iOS player technologies are covered in later sections.

Content Decryption Module
Widevine installs a Content Decryption Module (CDM) on every device that plays back
encrypted content. The module is unique for each type of device and has three major functions:

1. When the Player determines that the content is encrypted, it tells the CDM to generate a
license request. The MPD and PSSH (Protection System Specific Header) information is
retrieved from the content and parsed in order to determine the DRM system to be used.

2. The CDM then creates an encrypted license request object which it passes back to the
Player. The Player will then pass the encrypted license object to the License Server.

3. Next, when the License Server responds to the Player request, it sends an encrypted
object containing license information to the Player. Finally, the Player passes the
encrypted object to the CDM, which in turn passes it to the OEMCrypto Module for
decryption.

OEMCrypto Module
The OEMCrypto Module decrypts the content using information passed to it from the Player
(and the License Server). The OEMCrypto Module is in the Trusted Layer of the device and is
tied into the device hardware. It uses the encrypted license information to decrypt the media,
and the media sent to the video stack.

Google - Confidential Version 1.2: March 6, 2017 Page 10 of 28

Widevine DRM Security Model
The DRM security model provides secure decryption using a sequence of exchanges between
the Widevine License Server and the Content Decryption Module. The Player acts as a
facilitator for these exchanges, but cannot read the encrypted license information or content.
Only the License Server and the Content Decryption Module can work directly with the license
information, but neither are open source. This unique mix of open source and protected source
enables Widevine DRM to make it easy to create custom playback applications that are
encrypted and secure.

The following eight steps explain the sequence of security exchanges for decryption:

1. Receive Media from Content Delivery Network (CDN)
The browser's media engine determines that the media is encrypted. The initialization data
(InitData) is extracted from the content by the browser and sent to the Player as an event. User
authorization is up to the client, not Widevine.

2. Pass Data to the Content Decryption Module (CDM)
The Player passes the initData to the Content Decryption Module. The Player is not able to
decrypt anything.

3. CDM Passes License Request to the Player
Having received data from the Player, the CDM creates a license request and passes the
request information back to the Player.

4. Player Passes License Request to License Server (via proxy)
Once the Player has the License Request, it can now pass that request to the Widevine License
Server (via proxy). But the Player cannot read the request itself or take any action except to
pass it on.

5. License Server Passes License to Player
When the License Server receives the request, it responds to the request by sending the license
back to the Player. The license is an encrypted message that includes license information data.

6. The Player Passes the License to the Content Decryption Module
The Player passes the encrypted license to the Content Decryption Module.

7. The CDM Passes Data to the OEMCrypto Module
Because the CDM is not in the Trusted Layer of the device, it must pass the information to the
OEMCrypto Module, which does reside in the Trusted layer of the device. The actual decryption
takes place in the OEMCrypto Module. In some implementations, the decoding takes place
there also. The Browser does the actual parsing of the container.

8. OEMCrypto Sends Video Chunks to the Screen

Google - Confidential Version 1.2: March 6, 2017 Page 11 of 28

Once the content is demultiplexed, decrypted, and decoded, it is sent to the screen in small
chunks, and is not stored anywhere on the device.

Diagram 1-3 shows the playback security model's sequence of exchanges between the
playback components.

Diagram 1-3: Widevine DRM Playback Security Model

Security Levels Provided by Widevine DRM
Widevine devices provide different security levels, depending on the device used.

Security Level Definitions.
The following security level definitions are used by Widevine:

Google - Confidential Version 1.2: March 6, 2017 Page 12 of 28

Security Level 1
All content processing, cryptography, and control is performed within the Trusted Execution
Environment (TEE). In some implementation models, security processing may be performed in
different chips.

Security Level 2
Performs cryptography (but not video processing) within the TEE: decrypted buffers are
returned to the application domain and processed through separate video hardware or software.
At level 2, however, cryptographic information is still processed only within the trusted execution
environment.

Security Level 3
Does not have a TEE on the device. Appropriate measures may be taken to protect the
cryptographic information and decrypted content on host operating system. A Level 3
implementation may also include a hardware cryptographic engine, but that only enhances
performance, not security.

Security Level for Widevine Devices
The following table describes the security for Widevine devices:

Device Type Security Level

Chrome on desktops L3

ChromeOS L1, L3

Android L1, L3

Embedded devices Varies depending on implementation

Google - Confidential Version 1.2: March 6, 2017 Page 13 of 28

Shaka Packager
Widevine DRM provides the Shaka Packager so that you can take content and transmux the
content into segments suitable for adaptive streaming using DASH and HLS. In addition, Shaka
Packager encrypts the content using the Widevine DRM CENC (Common Encryption), Generic
CENC, Generic FairPlay Streaming encryption formats. The packager also prepares a DASH
manifest (MPD) that identifies media streams and their respective URLs.

Packaging Steps
These are the steps for packaging your content for DASH streaming:

1. Encode the video using the VP9 or H.264 codec. MPEG2-TS and Widevine 1.0 (WVM)
are also supported and other encoding formats may be supported in the future. You can
use any encoding tools you want as long as they follow the standards for the media you
are encoding

2. Separate files must be encoded for each resolution and bitrate that you want your player
to support. For example, 1920x1080 at 6MBPS might be a high-quality choice and a
low-quality would be 320x240 at 1MBPS.

3. The following three steps are then performed concurrently by Shaka Packager:

a. It converts each encoded file to a fragmented MP4 or WebM container format
with defined segments. Each segment will be the same time-coded length. Shaka
Packager will produce a fragmented MP4 file for each specific resolution and
bitrate file you feed it.

b. It encrypts each file with CENC using license information obtained from the
Widevine License Server.

c. It creates a manifest (MPD) describing each fragmented MP4 file and all the
details necessary to play it back. Additionally the system allows for the injection
of a CENC PSSH (Protection System Specific Header) to identify the DRM
system used.

Once Shaka Packager is finished, copy the different bitrate/resolution files and the manifest to a
folder on your Content Delivery Network. The URL pointing to the MPD will be used to begin the
streaming.

Diagram 2-1 shows the process flow for using Shaka Packager.

Google - Confidential Version 1.2: March 6, 2017 Page 14 of 28

Diagram 2-1: Shaka Packager Content Flow

Working with Shaka Packager
The following resources will help you work with Shaka Packager more easily and efficiently.

Downloading Shaka Packager
You can download the Shaka packager source code at
https://GitHub.com/google/shaka-packager.

Building Shaka Packager
Use Git or Subversion to download the source source code. The build tools are designed for
Linux, but you can use Docker to build on an Apple Mac. If you want to build the packager on
Windows, you can use Cygwin from https://www.cygwin.com. Follow these steps to build the
package:

1. Install the Chromium Depot tools. The Chromium Depot tools can be found at
https://www.chromium.org/developers/how-tos/get-the-code.

2. Get the Shaka Packager source code from GitHub.
3. Build the Shaka Packager using the Ninja build tool. Ninja is a utility similar to the make

build tool, but is faster. Ninja are included in the Chromium depot tools.

Google - Confidential Version 1.2: March 6, 2017 Page 15 of 28

https://www.cygwin.com/
https://github.com/google/shaka-packager
https://www.chromium.org/developers/how-tos/get-the-code

Once you have built Shaka Packager, you can use it to multiplex and encrypt media for
transmission to the Content Delivery Network of your choice.

Shaka Packager Community
You can participate in Shaka Packager community activity at
https://GitHub.com/google/shaka-packager/issues.

ISO BMFF
Shaka Packager supports common media containers: WebM, ISO BMFF, MPEG-2 TS, and
Widevine Media 1.0 (WVM). You can learn more about ISO BMFF at
http://www.w3.org/2013/12/byte-stream-format-registry/isobmff-byte-stream-format.html. The
current version supported is ISO/IEC 23001-7 Common Encryption in ISO base media file
format files - version 2.

The video must be encoded in VP9 or H.264 format but other formats may be supported at a
later time. You are free to use any tools to encode video in those formats, but the Shaka
Packager must be used to prepare files for DASH or HLS streaming.

Shaka HTML5 Video Player
Widevine DRM provides the Shaka Player for platforms supporting HTML5. Shaka Player
makes it possible to have secure playback of streaming video over the Internet. It does this by
first receiving a DASH (Dynamic Adaptive Streaming over HTTP) multiplexed stream,
determining the current bandwidth of the user, and selecting the appropriate segment for
optimal playback. Segments will be the same length but may have different resolutions and
bitrates. Next Shaka Player prepares the chosen segment for decrypting and decoding by the
device Content Decryption Module and underlying video hardware. At this point, the video is
ready to play.

DASH, CENC, EME, MSE Standards
The DASH and CENC standards were discussed earlier, but Shaka Player also uses two other
open standards: Encrypted Media (EME) and Media Source (MSE) extensions to the HTML5
Media Element.

Player Components
The playback of secure video content through Shaka Player involves these five major
components:

● Widevine License Server
● Shaka Player Library
● Encrypted Media Extensions
● Media Source Extensions

Google - Confidential Version 1.2: March 6, 2017 Page 16 of 28

https://github.com/google/shaka-packager/issues
http://www.w3.org/2013/12/byte-stream-format-registry/isobmff-byte-stream-format.html

● Content Decryption Module

Widevine License Server
The Widevine License Server has been covered earlier and serves license information to Shaka
Player.

Shaka Player Library
Shaka Player Library is a free and open-source library that facilitates secure playback of
encrypted media in an HTML5 environment. The Shaka Player library is written in JavaScript
and compiled using the Closure library for greater efficiency, quality, and security. The core of
Shaka Player uses the twin HTML5 media standards of Encrypted Media Extensions (EME) and
Media Source Extensions (MSE) to ensure that the streams are demultiplexed, decrypted, and
decoded securely.

Encrypted Media Extensions
Shaka Player uses the open source Encrypted Media Extensions "under the hood" to implement
content security. You don't need to do any additional programming to make it work, but because
Shaka Player is open-source, you can always modify the details. Encrypted Media Extensions is
covered earlier in this document.

Media Source Extensions
Shaka Player uses the open source Media Source Extensions to enable DASH streaming, but
does not require additional programming since it is embedded in the Shaka Player library.
Media Source Extensions is covered earlier in this document.

Content Decryption Module
The Content Decryption Module is a vital part of the Widevine DRM stack and has been covered
earlier. Chrome installs this module to decrypt the media in a trusted manner.

Component Stack for Shaka Player
The Diagram 3-1 shows Shaka Player components and how they relate to each other in a stack
to enable media demultiplexing, decrypting, and decoding. The flow starts with Shaka Player
receiving content from the Content Delivery Network. The Shaka Player library works with the
License Server to pass encrypted license information to the Content Decryption Module. Media
Source Extensions and Encrypted Media Extensions work alongside of DASH and CENC to
enable the Content Decryption Module to play secure content.

Google - Confidential Version 1.2: March 6, 2017 Page 17 of 28

https://developers.google.com/closure/compiler/

Diagram 3-1: Shaka Player Component Stack

Chrome Components Needed by Shaka Player
When Chrome is installed on a device, it also installs an additional Widevine component: the
Content Decryption Module (CDM). Shaka Player requires this component for decryption.
Because the CDM is the heart of the decryption process, it is not open-source but uses the
protocols of the Common Encryption standard. If this component needs to be updated, Chrome
will update it automatically.

App Development with Shaka Player
Shaka provides a simple JavaScript API that only requires a small amount of code to configure
the player for your specific needs. All you need to do is input the following details:

1. Initialize the player.
2. Define the video source and manifest.
3. Configure the DRM type.

Diagram 3-2 shows the Shaka API programming requirements:

Google - Confidential Version 1.2: March 6, 2017 Page 18 of 28

Diagram 3-2: Programming the Shaka API

Working with Shaka Player
The following requirements and resources will help you to work with the player more easily and
efficiently.

Downloading Shaka
You can download the latest version of Shaka at https://GitHub.com/google/shaka-player. More
information about Shaka Player is available from g.co/shakainfo

Shaka Requirements
Shaka requires an HTML5-compliant browser (i.e. Chrome 33 or higher) that supports EME and
MSE.

Shaka Community
There is an online community of participants in the Shaka open source GitHub project at
https://GitHub.com/google/shaka-player/issues. At this site you can meet with other users and
Google developers who can answer questions, make suggestions, and discuss programming
options. There is also a mailing list you can join for further discussion of Shaka issues at
https://groups.google.com/forum/#!forum/shaka-player-users.

Building Shaka
In order to get the most out of Shaka Player, you need to build it from source code provided by
Widevine on GitHub. This code is updated frequently, ensuring that you can get the latest build.
The build uses the Google Closure compiler on the Shaka JavaScript source code to minify,
optimize, obfuscate, and check for many different types of errors. You can run Shaka in the
uncompiled state but this is not recommended for production environments because the
compiled version is faster, smaller, and more robust. Instructions for downloading and building

Google - Confidential Version 1.2: March 6, 2017 Page 19 of 28

https://groups.google.com/forum/#!forum/shaka-player-users
https://github.com/google/shaka-player
https://github.com/google/shaka-player/issues
http://g.co/shakainfo

Shaka Player on Windows, Mac, and Linux are at
http://shaka-player-demo.appspot.com/docs/tutorial-dev.html.

Pre-compiled Builds
Pre-compiled release builds of Shaka Player are available from CDNJS.com for your
convenience. For more information, visit https://cdnjs.com/libraries/shaka-player.

Test Application
Shaka provides a test app you can use for functional testing. You can tune this app by adjusting
specific URL parameters if needed. By using this app, you can determine that your own media
application running on top of Shaka is working correctly. For more information, see
http://shaka-player-demo.appspot.com/docs/tutorial-dev.html.

Google - Confidential Version 1.2: March 6, 2017 Page 20 of 28

http://shaka-player-demo.appspot.com/docs/tutorial-dev.html
https://cdnjs.com/libraries/shaka-player
http://shaka-player-demo.appspot.com/docs/tutorial-dev.html

Android Player for Widevine DRM
You can develop a native Android media player application using the Java Platform APIs or a
web application using HTML5 and JavaScript APIs. A native Android application must use
low-level Android API methods. DASH and CENC are open standards that the Android player
supports.

Components for Android in Widevine DRM
The components for Android follow the general pattern for Widevine DRM player applications.
The main difference is that you must use low-level Android API methods and you have the
option of using an open-source project, ExoPlayer, as a sample application, library, or reference
player for A/B testing.

Diagram 4-1 shows the components for Android in Widevine DRM and how they relate to each
other.

Diagram 4-1: Android Player Component Stack

Google - Confidential Version 1.2: March 6, 2017 Page 21 of 28

Native Android Application
Android has Widevine technology built into the Android libraries. Android media players are
normally created using the MediaPlayer interface at
http://developer.android.com/reference/android/media/MediaPlayer.html. However,
MediaPlayer does not support DASH at a high-level. Instead, you will want to use the following
Android interfaces to provide DASH support:

Interface Android SDK Location

MediaExtractor http://developer.android.com/reference/android/media/MediaExtractor.html

MediaCodec http://developer.android.com/reference/android/media/MediaCodec.html

MediaCrypto http://developer.android.com/reference/android/media/MediaCrypto.html

MediaDrm https://developer.android.com/reference/android/media/MediaDrm.html

For an example of how to use these interfaces to play DASH video, see the ExoPlayer
open-source project at http://google.GitHub.io/ExoPlayer.

ExoPlayer
The ExoPlayer project can be useful when creating native applications in the following ways:

● Reference Player
● Source Code Study
● Library Wrapper

Reference Player
The ExoPlayer can be used as an A/B reference to test your native player application. You will
be able to see if your application is functional by switching back and forth between your player
and ExoPlayer.

Source Code
You can study the ExoPlayer source code to see how the Android libraries are called.

Library Wrapper
The ExoPlayer exports methods that you can call to simplify your Android development. The
methods provide a wrapper for complicated method calls, saving you time and trouble.

Google - Confidential Version 1.2: March 6, 2017 Page 22 of 28

http://developer.android.com/reference/android/media/MediaPlayer.html
http://google.github.io/ExoPlayer/
http://developer.android.com/reference/android/media/MediaExtractor.html
http://developer.android.com/reference/android/media/MediaCrypto.html
https://developer.android.com/reference/android/media/MediaDrm.html
http://developer.android.com/reference/android/media/MediaCodec.html

HTML5 Chrome in Android
Android 5+ includes a version of Chrome that supports HTML5. You can implement an HTML5
DASH and CENC video application using Encrypted Media Extensions (EME) and Media
Source Extensions (MSE). Shaka Player supports Chrome on Android. See Shaka Player
section for more information on HTML5 playback.

Supported Android Versions
The Widevine CDM and OEMCrypto modules are supported in Android 4.4 (API Level 16) or
higher. ExoPlayer is also supported for those versions.

Google - Confidential Version 1.2: March 6, 2017 Page 23 of 28

Widevine DRM SDK for iOS
Apple iOS does not natively support Dynamic Adaptive Streaming over HTTP (DASH) or
Common Encryption (CENC). For this reason, Widevine DRM has created an SDK for iOS
developers who want to stream video using DASH with CENC. Since iOS uses the HTTP Live
Streaming (HLS) protocol instead of DASH, Widevine DRM transmuxes DASH to HLS
on-the-fly, while keeping the content protected. Widevine DRM provides the CDM Dynamic
Library to facilitate the transmuxing process.

CDM Dynamic Library
Widevine provides the CDM Dynamic Library (CDL) to incorporate Widevine video into your own
iOS application. CDL contains components that use DASH and CENC to make it possible to
view video content securely on an iOS device. The following components make up the dynamic
library:

● Universal DASH Transmuxer
● Content Decryption Module
● OEMCrypto API

Universal DASH Transmuxer
The Universal DASH Transmuxer (UDT) enables DASH content to be converted to HLS streams
on-the-fly without any perceptible loss of playback fidelity. The UDT workflow contains the
following stages:

● Parse the Manifest
● Create an HLS Playlist
● Stream the Segments

Parse the Manifest
An XML parser is required to read the DASH manifest (MPD) and then parse each element for
input for HLS playlist creation. The TBXML utility is recommended and used by the included
reference player, but XML parsers such as the native libxml2 or others, like NSXMLParser or
TouchXML, can be used.

Create an HLS Playlist
The input to create an HLS playlist will be dependent on the complexity of the incoming parsed
manifest (MPD). Once parsed, the parameters will be passed to the UDT and a separate .m3u8
playlist will be generated for each audio and video track. For example, an MPD containing 4
separate bitrates of audio and video would result with 8 playlists.

Google - Confidential Version 1.2: March 6, 2017 Page 24 of 28

Stream Segments
Once the HLS playlists have been created, a localhost URL must be sent to the video player to
initiate the standard HTTP request. The request must be intercepted by a locally running proxy
and must return the transmuxed TS segments back to the player from the UDT. The
CocoaHTTPServer is recommended and is used by the reference player, but any localhost
server can be used.

Content Decryption Module
The Content Decryption Module (CDM) implements methods and callbacks that are compliant
with Common Encryption (CENC) standards. The CDM is responsible for acquiring license
information from the Widevine License server and handles license exchanges in a secure
manner to enable playback of encrypted content. The CDM solution also contains the following
utilities for a successful operation:

● iOS Host
● Protocol Buffers
● String Encoders

iOS Host
The Host interface communicates with the upper layers of the iOS system and processes
application-level events and system-level services.

Protocol Buffers
The license protocol used to communicate with the License Server is a simple request-response
over HTTPS. The License Request and License Response messages are constructed and
parsed using Google Protocol Buffers.

String Encoders
A collection of high performance c-string transformations used for base64 strings.

OEMCrypto API
The purpose of OEMCrypto API is to provide an additional layer of security while handling
license information exchange. This interface defines a standard set of functions that are needed
to securely perform various license protocol operations.

Widevine Reference Player for iOS SDK
Widevine provides a reference player for testing the Widevine components on iOS. The
Reference Player is minimal and only for testing purposes. The Reference Player can be used
in parallel to your application to perform A/B testing.

Google - Confidential Version 1.2: March 6, 2017 Page 25 of 28

Diagram 5-1 shows the Widevine SDK for iOS components and their relationship to the
Reference Player.

 Diagram 5-1: Widevine SDK for iOS Components

Working with the Widevine SDK for iOS
The following requirements and resources will help you work with the Widevine SDK for iOS
more easily and efficiently.

Widevine iOS SDK Requirements
Apple iOS versions 7 through 9 are supported with 64-bit app capability. Xcode version 6.3 or
higher is required when building for iOS7 due to restrictions with embedded libraries

Google - Confidential Version 1.2: March 6, 2017 Page 26 of 28

Widevine CDM Dynamic Library Versions
The dynamic library comes in two release versions: production and development.

Production Releases
The production release dynamic library is protected and obfuscated and does not support
jailbroken devices or run with a debugger attached to the build (including XCode). Symbols are
removed and you can only work with Widevine production License Servers.

Development Releases
If you are working with a development release, you must use the Widevine test License Server
(license.uat.widevine.com). There are two Development builds: EIT and SIM. EIT contains
obfuscation and will only run on devices; SIM will only work on simulators, not devices.

Widevine iOS Community
There is a Google Group community for discussing the Widevine iOS SDK. You can find it at
widevine-ios-discuss@googlegroups.com.

Google - Confidential Version 1.2: March 6, 2017 Page 27 of 28

mailto:widevine-ios-discuss@googlegroups.com

Version History

Version Date Summary

1.0 9/11/2016 Creation

1.1 7/14/2016 Removal of MediaCloud service; change eDASH Packager to Shaka
Packager; updates for codecs, packages, and streaming formats supported;
minor edits.

1.2 3/6/2017 Updated Contact Widevine, Related Documentation

© 2017 Google, Inc. All Rights Reserved. No express or implied warranties are provided for herein. All specifications are subject to
change and any expected future products, features or functionality will be provided on an if and when available basis. Note that the
descriptions of Google’s patents and other intellectual property herein are intended to provide illustrative, non-exhaustive examples
of some of the areas to which the patents and applications are currently believed to pertain, and is not intended for use in a legal
proceeding to interpret or limit the scope or meaning of the patents or their claims, or indicate that a Google patent claim(s) is
materially required to perform or implement any of the listed items.

Google - Confidential Version 1.2: March 6, 2017 Page 28 of 28

